Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 7(1): 148, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379958

ABSTRACT

Development of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2mono or sE2oligo; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1-6. sE2-cVLP vaccines induced significantly higher levels of NAbs (p = 0.0065) compared to corresponding sE2 vaccines. Additionally, sE2oligo-cVLP was superior to sE2mono-cVLP in inducing bNAbs. Interestingly, human monoclonal antibody AR2A had reduced binding in ELISA to sE2oligo-cVLP compared with sE2mono-cVLP and competition ELISA using mouse sera from vaccinated animals indicated that sE2oligo-cVLP induced significantly less non-bNAbs AR2A (p = 0.0043) and AR1B (p = 0.017). Thus, cVLP-displayed oligomeric sE2 shows promise as an HCV vaccine candidate.

2.
Pharmaceutics ; 14(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745873

ABSTRACT

The requirement of an undisrupted cold chain during vaccine distribution is a major economic and logistical challenge limiting global vaccine access. Modular, nanoparticle-based platforms are expected to play an increasingly important role in the development of the next-generation vaccines. However, as with most vaccines, they are dependent on the cold chain in order to maintain stability and efficacy. Therefore, there is a pressing need to develop thermostable formulations that can be stored at ambient temperature for extended periods without the loss of vaccine efficacy. Here, we investigate the compatibility of the Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform with the freeze-drying process. Tag/Catcher cVLPs can be freeze-dried under diverse buffer and excipient conditions while maintaining their original biophysical properties. Additionally, we show that for two model cVLP vaccines, including a clinically tested SARS-CoV-2 vaccine, freeze-drying results in a product that once reconstituted retains the structural integrity and immunogenicity of the original material, even following storage under accelerated heat stress conditions. Furthermore, the freeze-dried SARS-CoV-2 cVLP vaccine is stable for up to 6 months at ambient temperature. Our study offers a potential solution to overcome the current limitations associated with the cold chain and may help minimize the need for low-temperature storage.

3.
PLoS One ; 16(7): e0255336, 2021.
Article in English | MEDLINE | ID: mdl-34329365

ABSTRACT

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


Subject(s)
Antigens, Viral , Hepacivirus , Hepatitis C Antibodies/immunology , Viral Envelope Proteins , Viral Hepatitis Vaccines , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/pharmacology , Drug Evaluation , Female , HEK293 Cells , Hepacivirus/genetics , Hepacivirus/immunology , Humans , Mice , Mice, Inbred BALB C , Solubility , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/pharmacology , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology , Viral Hepatitis Vaccines/pharmacology
4.
Vaccines (Basel) ; 9(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562114

ABSTRACT

Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed. This study compared the humoral immune responses in mice elicited against two different vaccine antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six different adjuvant formulations. In comparison to antibody responses obtained after immunization with the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused significantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion, 4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses, which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to other routes, intramuscular administration elicited the highest IgG levels. These results indicate that the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP display, which underscores the need for empirical testing of different extrinsic adjuvants.

5.
Nat Commun ; 12(1): 324, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436573

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Capsid/immunology , Protein Binding/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
6.
Vaccines (Basel) ; 8(3)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679905

ABSTRACT

Due to constant antigenic drift and shift, current influenza-A vaccines need to be redesigned and administered annually. A universal flu vaccine (UFV) that provides long-lasting protection against both seasonal and emerging pandemic influenza strains is thus urgently needed. The hemagglutinin (HA) stem antigen is a promising target for such a vaccine as it contains neutralizing epitopes, known to induce cross-protective IgG responses against a wide variety of influenza subtypes. In this study, we describe the development of a UFV candidate consisting of a HAstem trimer displayed on the surface of rigid capsid-like particles (CLP). Compared to soluble unconjugated HAstem trimer, the CLP-HAstem particles induced a more potent, long-lasting immune response and were able to protect mice against both homologous and heterologous H1N1 influenza challenge, even after a single dose.

8.
Sci Rep ; 9(1): 5260, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30918267

ABSTRACT

In Africa, cervical cancer and placental malaria (PM) are a major public health concern. There is currently no available PM vaccine and the marketed Human Papillomavirus (HPV) vaccines are prohibitively expensive. The idea of a combinatorial HPV and PM vaccine is attractive because the target population for vaccination against both diseases, adolescent girls, would be overlapping in Sub-Saharan Africa. Here we demonstrate proof-of-concept for a combinatorial vaccine utilizing the AP205 capsid-based virus-like particle (VLP) designed to simultaneously display two clinically relevant antigens (the HPV RG1 epitope and the VAR2CSA PM antigen). Three distinct combinatorial VLPs were produced displaying one, two or five concatenated RG1 epitopes without obstructing the VLP's capacity to form. Co-display of VAR2CSA was achieved through a split-protein Tag/Catcher interaction without hampering the vaccine stability. Vaccination with the combinatorial vaccine(s) was able to reduce HPV infection in vivo and induce anti-VAR2CSA IgG antibodies, which inhibited binding between native VAR2CSA expressed on infected red blood cells and chondroitin sulfate A in an in vitro binding-inhibition assay. These results show that the Tag/Catcher AP205 VLP system can be exploited to make a combinatorial vaccine capable of eliciting antibodies with dual specificity.


Subject(s)
Malaria Vaccines/immunology , Papillomavirus Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Female , HEK293 Cells , Humans , Immunoglobulins/metabolism , Malaria Vaccines/therapeutic use , Mice , Mice, Inbred BALB C , Neutralization Tests , Papillomavirus Infections/immunology , Papillomavirus Infections/metabolism , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/therapeutic use
9.
Oncoimmunology ; 7(3): e1408749, 2018.
Article in English | MEDLINE | ID: mdl-29399414

ABSTRACT

Overexpression of human epidermal growth factor receptor-2 (HER2) occurs in 20-30% of invasive breast cancers. Monoclonal antibody therapy is effective in treating HER2-driven mammary carcinomas, but its utility is limited by high costs, side effects and development of resistance. Active vaccination may represent a safer, more effective and cheaper alternative, although the induction of strong and durable autoantibody responses is hampered by immune-tolerogenic mechanisms. Using a novel virus-like particle (VLP) based vaccine platform we show that directional, high-density display of human HER2 on the surface of VLPs, allows induction of therapeutically potent anti-HER2 autoantibody responses. Prophylactic vaccination reduced spontaneous development of mammary carcinomas by 50%-100% in human HER2 transgenic mice and inhibited the growth of HER2-positive tumors implanted in wild-type mice. The HER2-VLP vaccine shows promise as a new cost-effective modality for prevention and treatment of HER2-positive cancer. The VLP platform may represent an effective tool for development of vaccines against other non-communicable diseases.

10.
Vaccine ; 35(30): 3726-3732, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28578824

ABSTRACT

Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However, it remains essential to identify an optimal vaccine formulation that can facilitate induction of a long-lasting TB anti-Pfs48/45 response. Here we report on the development and evaluation of two Pfs48/45-based virus-like particle (VLP) vaccines generated using the AP205 SpyTag/Catcher VLP system. Two different recombinant proteins (SpyCatcher-R0.6C and SpyCatcher-6C), comprising the Pfs48/45-6C region, were covalently attached to the surface of Spy-tagged Acinetobacter phage AP205 VLPs. Resulting Pfs48/45-VLP complexes appeared as non-aggregated particles of ∼30nm, each displaying an average of 216 (R0.6C) or 291 (6C) copies of the antigens. Both R0.6C and 6C VLP conjugates were strongly reactive with a monoclonal antibody (mAb45.1) targeting a conformational TB Pfs48/45 epitope, suggesting that the TB epitope is accessible for immune recognition on the particles. To select the most suitable vaccine formulation for downstream clinical studies the two VLP vaccines were tested in CD1 mice using different adjuvant formulations. The study demonstrates that VLP-display of R0.6C and 6C significantly increases antigen immunogenicity when using Montanide ISA 720 VG as extrinsic adjuvant.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Peptides/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, Virus-Like Particle/immunology , Adjuvants, Immunologic , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Female , Immunogenicity, Vaccine , Malaria, Falciparum/transmission , Mice , Peptides/chemistry , Peptides/genetics , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/chemistry
11.
Malar J ; 15(1): 545, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27825348

ABSTRACT

BACKGROUND: Malaria, caused by Plasmodium falciparum, continues to have a devastating impact on global health, emphasizing the great need for a malaria vaccine. The circumsporozoite protein (CSP) is an attractive target for a malaria vaccine, and forms a major component of RTS,S, the most clinically advanced malaria vaccine. The clinical efficacy of RTS,S has been moderate, yet has demonstrated the viability of a CSP-based malaria vaccine. In this study, a vaccine comprised of the full-length CSP antigen presented on a virus-like particle (VLP) is produced using a split-intein conjugation system (SpyTag/SpyCatcher) and the immunogenicity is tested in mice. METHODS: Full-length 3d7 CSP protein was genetically fused at the C-terminus to SpyCatcher. The CSP-SpyCatcher antigen was then covalently attached (via the SpyTag/SpyCatcher interaction) to Acinetobacter phage AP205 VLPs which were modified to display one SpyTag per VLP subunit. To evaluate the VLP-display effect, the immunogenicity of the VLP vaccine was tested in mice and compared to a control vaccine containing AP205 VLPs plus unconjugated CSP. RESULTS: Full-length CSP was conjugated at high density (an average of 112 CSP molecules per VLP) to AP205 SpyTag-VLPs. Vaccination of mice with the CSP Spy-VLP vaccine resulted in significantly increased antibody titres over a course of 7 months as compared to the control group (2.6-fold higher at 7 months after immunization). Furthermore, the CSP Spy-VLP vaccine appears to stimulate production of IgG2a antibodies, which has been linked with a more efficient clearing of intracellular parasite infection. CONCLUSION: This study demonstrates that the high-density display of CSP on SpyTag-VLPs, significantly increases the level and quality of the vaccine-induced humoral response, compared to a control vaccine consisting of soluble CSP plus AP205 VLPs. The SpyTag-VLP platform utilized in this study constitutes a versatile and rapid method to develop highly immunogenic vaccines. It might serve as a generic tool for the cost-effective development of effective VLP-vaccines, e.g., against malaria.


Subject(s)
Antibodies, Protozoan/blood , Antibody Formation , Protozoan Proteins/immunology , Vaccines, Virus-Like Particle/immunology , Acinetobacter/virology , Animals , Bacteriophages/chemistry , Cell Surface Display Techniques , Drug Carriers , Female , Immunoglobulin G/blood , Mice, Inbred BALB C , Protozoan Proteins/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics
12.
J Nanobiotechnology ; 14: 30, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27117585

ABSTRACT

BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.


Subject(s)
Vaccines, Virus-Like Particle/immunology , Acinetobacter/immunology , Animals , Antigens, Bacterial/immunology , B-Lymphocytes/immunology , Bacteriophages/immunology , Capsid Proteins/immunology , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccination/methods
13.
PLoS One ; 10(11): e0143071, 2015.
Article in English | MEDLINE | ID: mdl-26599509

ABSTRACT

Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Placenta/parasitology , Virion/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Biotinylation , Blotting, Western , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Female , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Mice, Inbred C57BL , Molecular Sequence Data , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/metabolism , Parasites/immunology , Pregnancy , Reproducibility of Results , Ultracentrifugation , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...